In [1]:
from pocs.utils.database import PanMongo
from astropy.time import Time
import pandas as pd

from matplotlib import pyplot as plt

%matplotlib inline

Getting data

If you are not local to the unit and want to explore the data you might want to export from the unit and import to your local machine.

Export data from unit

There are some convenience scripts that can be used to export the data from the NUC, which can then either be imported into a local mongo instance.

Note: Your output will vary

Export data:

➜ python pocs/utils/database.py --help  
usage: database.py [-h] [--yesterday] [--start-date START_DATE]
                   [--end-date END_DATE] [--collections COLLECTIONS]
                   [--backup-dir BACKUP_DIR] [--compress]

Exporter for mongo collections

optional arguments:
  -h, --help            show this help message and exit
  --yesterday           Export yesterday, defaults to True unless start-date
                        specified
  --start-date START_DATE
                        Export start date, e.g. 2016-01-01
  --end-date END_DATE   Export end date, e.g. 2016-01-31
  --collections COLLECTIONS
                        Collections to export
  --backup-dir BACKUP_DIR
                        Directory to store backup files, defaults to
                        $PANDIR/backups
  --compress            If exported files should be compressed, defaults to
                        True
➜ python pocs/utils/database.py --start-date 2017-01-30 --end-date 2017-01-31
Exporting collections:  2017-01-30 to 2017-01-31
        config
                No records found
        current
                No records found
        drift_align
                No records found
        environment
                No records found
        mount
                No records found
        observations
                293 records exported
                Compressing...
                Writing file: /var/panoptes/backups/20170130_to_20170131_observations.json.gz
        state
                No records found
        weather
                2094 records exported
                Compressing...
                Writing file: /var/panoptes/backups/20170130_to_20170131_weather.json.gz
Output file: [
   '/var/panoptes/backups/20170130_to_20170131_observations.json.gz',
   '/var/panoptes/backups/20170130_to_20170131_weather.json.gz']

Import data

➜ mongoimport --db panoptes --collection panoptes.observations --jsonArray < 20170130_to_20170131_observations.json

Exploring Data

Connect to mongo instance


In [2]:
db = PanMongo()

Show available collections


In [3]:
db.collections


Out[3]:
['config',
 'current',
 'drift_align',
 'environment',
 'mount',
 'observations',
 'state',
 'weather']

Find current value for collection


In [4]:
db.get_current('weather')


Out[4]:
{'_id': ObjectId('58d8b587535f695281fa2676'),
 'data': {'ambient_temp_C': 25.87,
  'date': datetime.datetime(2017, 3, 27, 8, 37, 23, 932000),
  'errors': {'error_1': '0', 'error_2': '0', 'error_3': '0', 'error_4': '0'},
  'gust_condition': 'Calm',
  'internal_voltage_V': 3.0,
  'ldr_resistance_Ohm': 37.3029315960912,
  'pwm_value': 9.970674486803519,
  'rain_condition': 'Dry',
  'rain_frequency': 2560.0,
  'rain_sensor_temp_C': '33.63',
  'safe': False,
  'sky_condition': 'Very Cloudy',
  'sky_temp_C': 22.53,
  'weather_sensor_firmware_version': '5.51',
  'weather_sensor_name': 'CloudWatcher',
  'weather_sensor_serial_number': '0884',
  'wind_condition': 'Calm',
  'wind_speed_KPH': 0.0},
 'date': datetime.datetime(2017, 3, 27, 8, 37, 28, 692000),
 'type': 'weather'}

In [5]:
db.get_current('environment')


Out[5]:
{'_id': ObjectId('58d8b570535f695281fa266e'),
 'data': {'camera_board': {'accelerometer': {'o': 0,
    'x': 0.05,
    'y': 0.01,
    'z': 0.99},
   'count': 343263,
   'humidity': 61.3,
   'power': {'camera_00': 1, 'camera_01': 1},
   'temp_00': 21.7},
  'telemetry_board': {'count': 333309,
   'current': {'cameras': 312, 'fan': 43, 'main': 328, 'mount': 0},
   'humidity': None,
   'power': {'cameras': 1, 'computer': 1, 'fan': 0, 'mount': 0, 'weather': 0},
   'temp_00': 0.0,
   'temperature': [21.56, -127.0, -127.0]}},
 'date': datetime.datetime(2017, 3, 27, 11, 26, 12, 487000),
 'type': 'environment'}

Work with a date range (and mongo cursor)


In [6]:
cursor = db.environment.find({
    'date': {
        '$gte': Time('2017-04-10').datetime,
        '$lte': Time('2017-04-12').datetime 
    }
}) #.sort([('date', -1)])

In [7]:
print("Num records: {}".format(cursor.count()))


Num records: 163467

In [8]:
environment = {
    'telemetry_board': {
        'temp_0': list(),
        'temp_1': list(),
        'temp_2': list(),
        'temp_3': list(),
#         'humidity': list(),
        'date': list(),
    },
    'camera_board': {
        'temp_0': list(),
        'humidity': list(),
        'date': list(),
    }
}

In [9]:
for record in cursor:
    try:
        data = record['data']['telemetry_board']
        board = 'telemetry_board'
        environment[board]['temp_0'].append(data['temp_00'])
        environment[board]['temp_1'].append(data['temperature'][0])
        environment[board]['temp_2'].append(data['temperature'][1])
        environment[board]['temp_3'].append(data['temperature'][2])
#         environment[board]['humidity'].append(data['humidity'])
        environment[board]['date'].append(record['date'])
    except KeyError:
        pass
        
    try:
        data = record['data']['camera_board']
        board = 'camera_board'
        environment[board]['temp_0'].append(data['temp_00'])
        environment[board]['humidity'].append(data['humidity'])
        environment[board]['date'].append(record['date'])
    except KeyError:
        pass

In [10]:
# camera = pd.DataFrame(environment['camera_board']).set_index('date')
computer_box = pd.DataFrame(environment['telemetry_board']).set_index('date')

In [11]:
computer_box.plot(figsize=(12,9), title="Computer Box Temperatures")


Out[11]:
<matplotlib.axes._subplots.AxesSubplot at 0x7fcd306434e0>

Work with a date range (and a list)


In [12]:
cursor = db.environment.find({
    'date': {
        '$gte': Time('2017-04-10 12:00:00').datetime,
        '$lte': Time('2017-04-10 23:59:59').datetime 
    }
}) #.sort([('date', -1)])

In [13]:
print("Num records: {}".format(cursor.count()))


Num records: 40822

In [14]:
# Convert to list
records = list(cursor)

In [15]:
# Examine first record
records[0]


Out[15]:
{'_id': ObjectId('58eb73c1ba6c190d5c50e6b4'),
 'data': {'telemetry_board': {'count': 1047161108,
   'current': {'cameras': 507, 'fan': 45, 'main': 548, 'mount': 148},
   'date': '2017-04-10T12:00:01 GMT',
   'humidity': 1.8,
   'name': 'telemetry_board',
   'power': {'cameras': 1, 'computer': 1, 'fan': 1, 'mount': 1, 'weather': 1},
   'temp_00': 9.1,
   'temperature': [7.31, 7.56, 11.31]}},
 'date': datetime.datetime(2017, 4, 10, 12, 0, 1, 987000),
 'type': 'environment'}

In [16]:
def get_power_reading(records, key):
    # Get the timestamps
    ts = pd.Series([rec['date'] for rec in records])
    
    power = pd.Series(
        [
            rec['data']['telemetry_board']['power'][key] 
            if 'telemetry_board' in rec['data'] else None
            for rec in records 
        ],
        index=ts
    )

    if key == 'computer':
        key = 'main'
    current = pd.Series(
        [
            rec['data']['telemetry_board']['current'][key]
            if 'telemetry_board' in rec['data'] else None
            for rec in records 
        ],
        index=ts
    )
    
    
    return pd.DataFrame({'current': current, 'power': power}, index=ts).dropna()

In [17]:
df0 = get_power_reading(records, 'computer')

In [18]:
df0.head(15)


Out[18]:
current power
2017-04-10 12:00:01.987 548.0 1.0
2017-04-10 12:00:04.004 542.0 1.0
2017-04-10 12:00:06.017 789.0 1.0
2017-04-10 12:00:07.029 557.0 1.0
2017-04-10 12:00:09.043 615.0 1.0
2017-04-10 12:00:12.062 560.0 1.0
2017-04-10 12:00:14.083 514.0 1.0
2017-04-10 12:00:16.092 687.0 1.0
2017-04-10 12:00:18.101 736.0 1.0
2017-04-10 12:00:20.118 705.0 1.0
2017-04-10 12:00:22.136 671.0 1.0
2017-04-10 12:00:25.164 699.0 1.0
2017-04-10 12:00:27.186 741.0 1.0
2017-04-10 12:00:29.208 676.0 1.0
2017-04-10 12:00:31.232 783.0 1.0

In [19]:
df0.plot(figsize=(12,9))


Out[19]:
<matplotlib.axes._subplots.AxesSubplot at 0x7fcd1d5f6860>

In [20]:
# Zoom in a bit
df0[0:1500].plot(figsize=(12,9))


Out[20]:
<matplotlib.axes._subplots.AxesSubplot at 0x7fcd1d402c18>